Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38045284

RESUMO

The 5' cap, catalyzed by RNA guanylyltransferase and 5'-phosphatase (RNGTT), is a vital mRNA modification for the functionality of mRNAs. mRNA capping occurs in the nucleus for the maturation of the functional mRNA and in the cytoplasm for fine-tuning gene expression. Given the fundamental importance of RNGTT in mRNA maturation and expression there is a need to further investigate the regulation of RNGTT. N6-methyladenosine (m6A) is one of the most abundant RNA modifications involved in the regulation of protein translation, mRNA stability, splicing, and export. We sought to investigate whether m6A could regulate the expression and activity of RNGTT. A motif for the m6A writer methyltransferase 3 (METTL3) in the 3'UTR of RNGTT mRNA was identified. Knockdown of METTL3 resulted in destabilizing RNGTT mRNA, and reduced protein expression. Sequencing of capped mRNAs identified an underrepresentation of ribosomal protein mRNA overlapping with 5' terminal oligopyrimidine (TOP) mRNAs and genes are dysregulated when cytoplasmic capping is inhibited. Pathway analysis identified disruptions in the mTOR and p70S6K pathways. A reduction in RPS6 mRNA capping, protein expression, and phosphorylation was detected with METTL3 knockdown.

2.
Front Oncol ; 13: 1255527, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869089

RESUMO

Introduction: Small cell lung cancer (SCLC) is characterized by poor prognosis and challenging diagnosis. Screening in high-risk smokers results in a reduction in lung cancer mortality, however, screening efforts are primarily focused on non-small cell lung cancer (NSCLC). SCLC diagnosis and surveillance remain significant challenges. The aberrant expression of circulating microRNAs (miRNAs/miRs) is reported in many tumors and can provide insights into the pathogenesis of tumor development and progression. Here, we conducted a comprehensive assessment of circulating miRNAs in SCLC with a goal of developing a miRNA-based classifier to assist in SCLC diagnoses. Methods: We profiled deregulated circulating cell-free miRNAs in the plasma of SCLC patients. We tested selected miRNAs on a training cohort and created a classifier by integrating miRNA expression and patients' clinical data. Finally, we applied the classifier on a validation dataset. Results: We determined that miR-375-3p can discriminate between SCLC and NSCLC patients, and between SCLC and Squamous Cell Carcinoma patients. Moreover, we found that a model comprising miR-375-3p, miR-320b, and miR-144-3p can be integrated with race and age to distinguish metastatic SCLC from a control group. Discussion: This study proposes a miRNA-based biomarker classifier for SCLC that considers clinical demographics with specific cut offs to inform SCLC diagnosis.

3.
Genes (Basel) ; 14(5)2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37239435

RESUMO

miRNAs are some of the most well-characterized regulators of gene expression. Integral to several physiological processes, their aberrant expression often drives the pathogenesis of both benign and malignant diseases. Similarly, DNA methylation represents an epigenetic modification influencing transcription and playing a critical role in silencing numerous genes. The silencing of tumor suppressor genes through DNA methylation has been reported in many types of cancer and is associated with tumor development and progression. A growing body of literature has described the crosstalk between DNA methylation and miRNAs as an additional layer in the regulation of gene expression. Methylation in miRNA promoter regions inhibits its transcription, while miRNAs can target transcripts and subsequently regulate the proteins responsible for DNA methylation. Such relationships between miRNA and DNA methylation serve an important regulatory role in several tumor types and highlight a novel avenue for potential therapeutic targets. In this review, we discuss the crosstalk between DNA methylation and miRNA expression in the pathogenesis of cancer and describe how miRNAs influence DNA methylation and, conversely, how methylation impacts the expression of miRNAs. Finally, we address how these epigenetic modifications may be leveraged as biomarkers in cancer.


Assuntos
MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Metilação de DNA/genética , Neoplasias/genética , Epigênese Genética/genética , Inativação Gênica
4.
Neurobiol Dis ; 181: 106106, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37001613

RESUMO

Epilepsy is a comorbidity associated with Alzheimer's disease (AD), often starting many years earlier than memory decline. Investigating this association in the early pre-symptomatic stages of AD can unveil new mechanisms of the pathology as well as guide the use of antiepileptic drugs to prevent or delay hyperexcitability-related pathological effects of AD. We investigated the impact of repeated seizures on hippocampal memory and amyloid-ß (Aß) load in pre-symptomatic Tg2576 mice, a transgenic model of AD. Seizure induction caused memory deficits and an increase in oligomeric Aß42 and fibrillary species selectively in pre-symptomatic transgenic mice, and not in their wildtype littermates. Electrophysiological patch-clamp recordings in ex vivo CA1 pyramidal neurons and immunoblots were carried out to investigate the neuronal alterations associated with the behavioral outcomes of Tg2576 mice. CA1 pyramidal neurons exhibited increased intrinsic excitability and lower hyperpolarization-activated Ih current. CA1 also displayed lower expression of the hyperpolarization-activated cyclic nucleotide-gated HCN1 subunit, a protein already identified as downregulated in the AD human proteome. The antiepileptic drug lamotrigine restored electrophysiological alterations and prevented both memory deficits and the increase in extracellular Aß induced by seizures. Thus our study provides evidence of pre-symptomatic hippocampal neuronal alterations leading to hyperexcitability and associated with both higher susceptibility to seizures and to AD-specific seizure-induced memory impairment. Our findings also provide a basis for the use of the antiepileptic drug lamotrigine as a way to counteract acceleration of AD induced by seizures in the early phases of the pathology.


Assuntos
Doença de Alzheimer , Camundongos , Humanos , Animais , Doença de Alzheimer/complicações , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Anticonvulsivantes/farmacologia , Lamotrigina/efeitos adversos , Hipocampo/metabolismo , Peptídeos beta-Amiloides/metabolismo , Convulsões/patologia , Camundongos Transgênicos , Modelos Animais de Doenças , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Transtornos da Memória/prevenção & controle
5.
Oncogene ; 42(19): 1597-1606, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37002315

RESUMO

Non-small cell lung cancer (NSCLC) patients carrying an epidermal growth factor receptor (EGFR) mutation have an initial favorable clinical response to the tyrosine kinase inhibitors (TKIs). Unfortunately, rapid resistance occurs mainly because of genetic alterations, including amplification of the hepatocyte growth factor receptor (MET) and its abnormal activity. The RNA post-transcriptional modifications that contribute to aberrant expression of MET in cancer are largely under-investigated and among them is the adenosine-to-inosine (A-to-I) RNA editing of microRNAs. A reduction of A-to-I editing in position 5 of miR-411-5p has been identified in several cancers, including NSCLC. In this study, thanks to cancer-associated gene expression analysis, we assessed the effect of the edited miR-411-5p on NSCLC cell lines. We found that edited miR-411-5p directly targets MET and negatively affects the mitogen-activated protein kinases (MAPKs) pathway. Considering the predominant role of the MAPKs pathway on TKIs resistance, we generated NSCLC EGFR mutated cell lines resistant to TK inhibitors and evaluated the effect of edited miR-411-5p overexpression. We found that the edited miR-411-5p reduces proliferation and induces apoptosis, promoting EGFR TKIs response in NSCLC-resistant cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo
6.
Genes (Basel) ; 13(11)2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36421832

RESUMO

Lung and breast cancer are the two most common causes of malignant pleural effusion (MPE). MPE diagnosis plays a crucial role in determining staging and therapeutic interventions in these cancers. However, our understanding of the pathogenesis and progression of MPE at the molecular level is limited. Extracellular Vesicles (EVs) and their contents, including microRNAs (miRNAs), can be isolated from all bodily fluids, including pleural fluid. This study aims to compare EV-miRNA patterns of expression in MPE caused by breast (BA-MPE) and lung (LA-MPE) adenocarcinomas compared to the control group of heart-failure-induced effusions (HF-PE). We conducted an analysis of 24 pleural fluid samples (8 LA-MPE, 8 BA-MPE, and 8 HF-PE). Using NanoString technology, we profiled miRNAs within EVs isolated from 12 cases. Bioinformatic analysis demonstrated differential expression of miR-1246 in the MPE group vs. HF-PE group and miR-150-5p and miR-1246 in the BA-MPE vs. LA-MPE group, respectively. This difference was demonstrated and validated in an independent cohort using real-time PCR (RT-PCR). miRNA-1246 demonstrated 4-fold increased expression (OR: 3.87, 95% CI: 0.43, 35) in the MPE vs. HF-PE group, resulting in an area under the curve of 0.80 (95% CI: 0.60, 0.99). The highest accuracy for differentiating MPE vs. HF-PE was seen with a combination of miRNAs compared to each miRNA alone. Consistent with prior studies, this study demonstrates dysregulation of specific EV-based miRNAs in breast and lung cancer; pleural fluid provides direct access for the analysis of these EV-miRNAs as biomarkers and potential targets and may provide insight into the underlying pathogenesis of tumor progression. These findings should be explored in large prospective studies.


Assuntos
Vesículas Extracelulares , Neoplasias Pulmonares , MicroRNAs , Derrame Pleural Maligno , Humanos , Derrame Pleural Maligno/genética , Derrame Pleural Maligno/diagnóstico , Derrame Pleural Maligno/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Estudos Prospectivos , Vesículas Extracelulares/metabolismo , Neoplasias Pulmonares/metabolismo
7.
Genes (Basel) ; 13(7)2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35886072

RESUMO

The epitranscriptome encompasses all post-transcriptional modifications that occur on RNAs. These modifications can alter the function and regulation of their RNA targets, which, if dysregulated, result in various diseases and cancers. As with other RNAs, miRNAs are highly modified by epitranscriptomic modifications such as m6A methylation, 2'-O-methylation, m5C methylation, m7G methylation, polyuridine, and A-to-I editing. miRNAs are a class of small non-coding RNAs that regulates gene expression at the post-transcriptional level. miRNAs have gathered high clinical interest due to their role in disease, development, and cancer progression. Epitranscriptomic modifications alter the targeting, regulation, and biogenesis of miRNAs, increasing the complexity of miRNA regulation. In addition, emerging studies have revealed crosstalk between these modifications. In this review, we will summarize the epitranscriptomic modifications-focusing on those relevant to miRNAs-examine the recent crosstalk between these modifications, and give a perspective on how this crosstalk expands the complexity of miRNA biology.


Assuntos
MicroRNAs , Neoplasias , Humanos , Metilação , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , Processamento Pós-Transcricional do RNA/genética
8.
Cancers (Basel) ; 13(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34830787

RESUMO

Extracellular vesicles (EVs) are heterogenous membrane-encapsulated vesicles secreted by every cell into the extracellular environment. EVs carry bioactive molecules, including proteins, lipids, DNA, and different RNA forms, which can be internalized by recipient cells, thus altering their biological characteristics. Given that EVs are commonly found in most body fluids, they have been widely described as mediators of communication in several physiological and pathological processes, including cancer. Moreover, their easy detection in biofluids makes them potentially useful candidates as tumor biomarkers. In this manuscript, we review the current knowledge regarding EVs and non-coding RNAs and their role as drivers of the metastatic process in lung cancer. Furthermore, we present the most recent applications for EVs and non-coding RNAs as cancer therapeutics and their relevance as clinical biomarkers.

9.
Front Oncol ; 10: 1454, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32974168

RESUMO

Lung cancer is the leading cause of cancer mortality worldwide. Increased understanding of the molecular mechanisms of the disease has led to the development of novel therapies and improving outcomes. Recently, extracellular vesicles (EVs) have emerged as vehicles for the transfer of genetic information between tumors and their microenvironment and have been implicated in lung cancer initiation, progression, and response to therapy. However, the mechanisms that drive the biogenesis and selective packaging of EVs remain poorly understood. Rab family guanosine triphosphates (GTPases) and their regulators are important membrane trafficking organizers. In this study, we investigated the role of select Rab GTPases on the regulation of EV release. We found that microRNAs target Rab GTPases to regulate EV release from lung cancer cell lines. In particular, Rab32 is a target of miR-124a, and siRNA and miRNA mediated inhibition of Rab32 leads to impaired EV secretion. The downstream implications for microRNA-based regulation of EV release are currently under investigation.

10.
Cancers (Basel) ; 12(7)2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650588

RESUMO

In the last two decades, RNA post-transcriptional modifications, including RNA editing, have been the subject of increasing interest among the scientific community. The efforts of the Human Genome Project combined with the development of new sequencing technologies and dedicated bioinformatic approaches created to detect and profile RNA transcripts have served to further our understanding of RNA editing. Investigators have determined that non-coding RNA (ncRNA) A-to-I editing is often deregulated in cancer. This discovery has led to an increased number of published studies in the field. However, the eventual clinical application for these findings remains a work in progress. In this review, we provide an overview of the ncRNA editing phenomenon in cancer. We discuss the bioinformatic strategies for RNA editing detection as well as the potential roles for ncRNA A to I editing in tumor immunity and as clinical biomarkers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...